Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(N-N) = 0.017 \text{ Å}$ R factor = 0.066 wR factor = 0.165 Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. *catena*-Poly[mercury(II)-di-μ-bromo-μpyridazine-κ²N:N']

The crystal structure of $[HgBr_2(Pyo)]_n$ (Pyo = pyridazine, $C_4H_4N_2$) consists of strands of octahedrally coordinated mercuric centers asymmetrically bridged by bromide and connected by the two neighboring N atoms of pyridazine molecules to complete the octahedral coordination of mercury. The Hg atoms lie on inversion centers.

Received 29 March 2004 Accepted 29 April 2004 Online 8 May 2004

Comment

N-Donor ligands exhibit a wide variety of coordination compounds with mercury (*e.g.* Grdenić, 1965; Breitinger & Brodersen, 1970). We have carried out a systematic study of the affinity of mercury towards *N*-donor ligands (Nockemann, 2002; Meyer & Nockemann, 2003).

The crystal structure of $[HgBr_2(Pyo)]_n$ (Pyo = pyridazine) consists of strands of octahedrally coordinated mercuric centers asymmetrically bridged by bromide, with two short Hg-Br distances of 2.5962 (15) Å and two longer at 3.0280 (16) Å. Adjacent $[HgN_2Br_4]$ octahedra are linked by two neighboring N atoms of a pyridazine molecule, with Hg-N distances of 2.532 (11) Å. This is the shortest Hg-N bond observed in diazine adducts of mercuric bromide, and results from the high basicity of pyridazine (Meyer & Nockemann, 2003). The Br-Hg-Br angle in the Hg₂Br₂ rings in the strands in the [010] direction is 84.34 (5)°. The two different Hg-Br distances are concomitant with a reduction of the symmetry from space group *Imma* for $[HgCl_2(Pyo)]_n$, with four symmetrical chloride bridges (Nockemann & Meyer, 2004), to C2/c for $[HgBr_2(Pyo)]_n$.

Hg atoms lie on inversion centers; all other atoms are in general positions.

Experimental

Crystals of $[HgBr_2(Pyo)]_n$ were obtained by adding a solution of 1 g (12.5 mmol) pyridazine (1,2-diazine) in 20 ml methanol dropwise and slowly to 10 ml of a 0.1 N aqueous solution of mercury(II) bromide without stirring. This solution was allowed to stand for 7 d, during which colorless prismatic crystals appeared.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Packing diagram of $[HgBr_2(Pyo)]_n$, viewed approximately down the *c* axis.

Crystal data

[HgBr₂(C₄H₄N₂)] $M_r = 440.50$ Monoclinic, C2/c a = 10.178 (3) Å b = 13.653 (3) Å c = 7.438 (2) Å $\beta = 131.061$ (18)° V = 779.3 (4) Å³ Z = 4Data collection Stoe IPDS-I diffractometer

Stoe IPDS-1 diffractometer φ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) $T_{min} = 0.004, T_{max} = 0.068$ 3824 measured reflections 771 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.165$ S = 0.98771 reflections 41 parameters H-atom parameters constrained $D_x = 3.754 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 3625 reflections $\theta = 3.0-32.2^{\circ}$ $\mu = 29.92 \text{ mm}^{-1}$ T = 293 (2) K Prism, colorless $0.3 \times 0.2 \times 0.2 \text{ mm}$

637 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.270$
$\theta_{\rm max} = 26.0^{\circ}$
$h = -12 \rightarrow 12$
$k = -16 \rightarrow 16$
$l = -8 \rightarrow 9$

$w = 1/[\sigma^2(E^2) + (0.0896P)^2]$
$w = 1/[0 (T_o) + (0.03001)]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 1.76 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -3.93 \text{ e} \text{ \AA}^{-3}$
Extinction correction: SHELX
Extinction coefficient: 0.0013 (5

Figure 2

View of a part of the $[HgBr_2(Pyo)]_n$ coordination polymer, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Table 1Selected geometric parameters (Å, °).

Hg—N	2.532 (11)	N-N ⁱⁱⁱ	1.332 (18)
Hg-Br ⁱ	2.5962 (15)	N-C1	1.339 (14)
Hg—Br	3.0280 (16)	C1-C2	1.360 (19)
Hg-Br ⁱⁱ	3.0280 (16)		
N ⁱⁱ -Hg-N	180	Hg ⁱⁱⁱ -Br-Hg	82.41 (4)
N ⁱⁱ -Hg-Br ⁱⁱⁱ	88.8 (3)	N ⁱⁱⁱ -N-C1	118.0 (6)
N-Hg-Br ⁱⁱⁱ	91.2 (3)	N ⁱⁱⁱ -N-Hg	117.8 (2)
Br ⁱⁱⁱ –Hg–Br ⁱ	180	C1-N-Hg	123.7 (7)
N ⁱⁱ -Hg-Br	92.6 (2)	N-C1-C2	124.4 (6)
Br ⁱⁱⁱ –Hg–Br	84.34 (5)	$C2^{iii} - C2 - C1$	117.5 (6)
Br ⁱ -Hg-Br	95.66 (5)		

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) -x, -y, 1 - z; (iii) $-x, y, \frac{3}{2} - z$.

The highest peak and deepest hole were located 1.05 and 0.95 Å, respectively, from Hg1. H atoms were visible in a difference map and were treated as riding atoms, with a C-H distance of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-STEP32 (Stoe & Cie, 2000); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

- Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
- Breitinger, D. & Brodersen, K. (1970). Angew. Chem. Int. Ed. Engl. 9, 357–367. Grdenić, D. (1965). Quart. Rev. 19, 303–327.
- Meyer, G. & Nockemann, P. (2003). Z. Anorg. Allg. Chem. 629, 1447-1461.
- Nockemann, P. (2002). Dissertation, Universität zu Köln, Germany.
- Nockemann, P. & Meyer, G. (2004). Acta Cryst. E60, m751-m752.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2000). X-STEP32. Version 1.06f. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2001). *X-AREA* (Version 1.15) and *X-RED*32 (Version 1.22). Stoe & Cie, Darmstadt, Germany.