Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{N})=0.017 \AA$
R factor $=0.066$
$w R$ factor $=0.165$
Data-to-parameter ratio $=18.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[mercury(II)-di- μ-bromo- μ pyridazine $\left.-\kappa^{2} N: N^{\prime}\right]$

The crystal structure of $\left[\mathrm{HgBr}_{2}(\mathrm{Pyo})\right]_{n}$ (Pyo $=$ pyridazine, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$) consists of strands of octahedrally coordinated mercuric centers asymmetrically bridged by bromide and connected by the two neighboring N atoms of pyridazine molecules to complete the octahedral coordination of mercury. The Hg atoms lie on inversion centers.

Comment

N-Donor ligands exhibit a wide variety of coordination compounds with mercury (e.g. Grdenić, 1965; Breitinger \& Brodersen, 1970). We have carried out a systematic study of the affinity of mercury towards N-donor ligands (Nockemann, 2002; Meyer \& Nockemann, 2003).

(I)

The crystal structure of $\left[\mathrm{HgBr}_{2}(\mathrm{Pyo})\right]_{n}$ ($\mathrm{Pyo}=$ pyridazine) consists of strands of octahedrally coordinated mercuric centers asymmetrically bridged by bromide, with two short $\mathrm{Hg}-\mathrm{Br}$ distances of $2.5962(15) \AA$ and two longer at 3.0280 (16) \AA. Adjacent $\left[\mathrm{HgN}_{2} \mathrm{Br}_{4}\right]$ octahedra are linked by two neighboring N atoms of a pyridazine molecule, with Hg N distances of 2.532 (11) \AA. This is the shortest $\mathrm{Hg}-\mathrm{N}$ bond observed in diazine adducts of mercuric bromide, and results from the high basicity of pyridazine (Meyer \& Nockemann, 2003). The $\mathrm{Br}-\mathrm{Hg}-\mathrm{Br}$ angle in the $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ rings in the strands in the [010] direction is $84.34(5)^{\circ}$. The two different $\mathrm{Hg}-\mathrm{Br}$ distances are concomitant with a reduction of the symmetry from space group Imma for $\left[\mathrm{HgCl}_{2}(\mathrm{Pyo})\right]_{n}$, with four symmetrical chloride bridges (Nockemann \& Meyer, 2004), to $C 2 / c$ for $\left[\operatorname{HgBr}_{2} \text { (Pyo) }\right]_{n}$.

Hg atoms lie on inversion centers; all other atoms are in general positions.

Experimental

Crystals of $\left[\mathrm{HgBr}_{2}(\mathrm{Pyo})\right]_{n}$ were obtained by adding a solution of 1 g (12.5 mmol) pyridazine (1,2 -diazine) in 20 ml methanol dropwise and slowly to 10 ml of a 0.1 N aqueous solution of mercury(II) bromide without stirring. This solution was allowed to stand for 7 d , during which colorless prismatic crystals appeared.

Figure 1
Packing diagram of $\left[\mathrm{HgBr}_{2}(\mathrm{Pyo})\right]_{n}$, viewed approximately down the c axis.

Crystal data

$\left[\mathrm{HgBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$
$M_{r}=440.50$
Monoclinic, C2/c
$a=10.178$ (3) A
$b=13.653$ (3) \AA
$c=7.438$ (2) A
$\beta=131.061(18)^{\circ}$
$V=779.3$ (4) \AA^{3}
$Z=4$
$D_{x}=3.754 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3625
reflections
$\theta=3.0-32.2^{\circ}$
$\mu=29.92 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Stoe IPDS-I diffractometer φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.004, T_{\text {max }}=0.068$
3824 measured reflections
771 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.165$
$S=0.98$
771 reflections
41 parameters
H -atom parameters constrained

637 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.270$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-16 \rightarrow 16$
$l=-8 \rightarrow 9$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0896 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.76 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-3.93 \mathrm{e}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.0013 (5)

Figure 2
View of a part of the $\left[\mathrm{HgBr}_{2}(\mathrm{Pyo})\right]_{n}$ coordination polymer, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg}-\mathrm{N}$	$2.532(11)$	$\mathrm{N}-\mathrm{N}^{\text {iii }}$	$1.332(18)$
$\mathrm{Hg}-\mathrm{Br}^{\mathrm{i}}$	$2.5962(15)$	$\mathrm{N}-\mathrm{C} 1$	$1.339(14)$
$\mathrm{Hg}-\mathrm{Br}$	$3.0280(16)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.360(19)$
$\mathrm{Hg}-\mathrm{Br}$			
$\mathrm{N}^{\text {iii }}-\mathrm{Hg}-\mathrm{N}$	$3.0280(16)$		$82.41(4)$
$\mathrm{N}^{\mathrm{ii}}-\mathrm{Hg}-\mathrm{Br}^{\text {iii }}$	180	$\mathrm{Hg}^{\text {iii }}-\mathrm{Br}-\mathrm{Hg}$	$118.0(6)$
$\mathrm{N}-\mathrm{Hg}-\mathrm{Br}^{\text {iii }}$	$88.8(3)$	$\mathrm{N}^{\text {iii }}-\mathrm{N}-\mathrm{C} 1$	$117.8(2)$
$\mathrm{Br}^{\text {iii }}-\mathrm{Hg}-\mathrm{Br}^{\mathrm{i}}$	$91.2(3)$	$\mathrm{N}^{\text {iii }}-\mathrm{N}-\mathrm{Hg}$	$123.7(7)$
$\mathrm{N}^{\text {ii }}-\mathrm{Hg}-\mathrm{Br}^{\text {i }}$	180	$\mathrm{C} 1-\mathrm{N}-\mathrm{Hg}$	$124.4(6)$
$\mathrm{Br}^{\text {iii }}-\mathrm{Hg}-\mathrm{Br}$	$92.6(2)$	$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	$117.5(6)$
$\mathrm{Br}^{\mathrm{i}}-\mathrm{Hg}-\mathrm{Br}$	$84.34(5)$	$\mathrm{C} 2^{\text {iii }}-\mathrm{C} 2-\mathrm{C} 1$	

Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $-x,-y, 1-z$; (iii) $-x, y, \frac{3}{2}-z$.
The highest peak and deepest hole were located 1.05 and $0.95 \AA$, respectively, from $\mathrm{Hg} 1 . \mathrm{H}$ atoms were visible in a difference map and were treated as riding atoms, with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-STEP32 (Stoe \& Cie, 2000); data reduction: X-RED32 (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Breitinger, D. \& Brodersen, K. (1970). Angew. Chem. Int. Ed. Engl. 9, 357-367. Grdenić, D. (1965). Quart. Rev. 19, 303-327.
Meyer, G. \& Nockemann, P. (2003). Z. Anorg. Allg. Chem. 629, 1447-1461.
Nockemann, P. (2002). Dissertation, Universität zu Köln, Germany.
Nockemann, P. \& Meyer, G. (2004). Acta Cryst. E60, m751-m752.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2000). X-STEP32. Version 1.06f. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-AREA (Version 1.15) and X-RED32 (Version 1.22). Stoe \& Cie, Darmstadt, Germany.

